Abstract
Nanotechnology has been widely used in cancer treatment but only a small fraction (0.7 %) of the administered nanoparticle was delivered into a solid tumor, while the remaining fraction causes off-target toxicity in healthy tissues. The activation of prodrugs by exogenous enzymes can be used as an effective anticancer strategy to reduce systemic toxicity. In this study, the laccase@zeolitic imidazolate framework-8 (LA@ZIF-8) enzyme-activated prodrug system was created based on the high catalytic activity of LA in an acidic environment and the pH response (pH∼5.5) of ZIF-8. Quercetin (QU) was selected as the prodrug, which is non-toxic and even beneficial without being activated by LA. LA could be precisely released in the acidic tumor microenvironment for activating nontoxic QU successfully to produce toxic oxidized quercetin (OQU), and the LA was steady loaded on the LA@ZIF-8 under physiological conditions (pH∼7.4). Especially, the high concentrations of glutathione (GSH) in tumors could accelerate the oxidation of QU by LA. Meanwhile, GSH could be consumed continuously by the reduction of OQU for regenerating QU, thus a LA-QU-GSH redox was formed ingeniously. Therefore, the synergistic effect of OQU toxicity and GSH depletion induced reactive oxygen species (ROS) accumulation and tumor cell apoptosis. Overall, the LA@ZIF-8-QU prodrug system provides ideas for safe and effective cancer treatment with low off-target toxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.