Abstract

The S100B protein belongs to a family of small Ca2+-binding proteins involved in several functions including cytoskeletal reorganization. The effect of S 100B on protein phosphorylation was investigated in a cytoskeletal fraction prepared from immature rat hippocampus. An inhibitory effect of 5 microM S100B on total protein phosphorylation, ranging from 25% to 40%, was observed in the presence of Ca2+ alone, Ca2+ plus calmodulin or Ca2+ plus cAMP. Analysis by two dimensional electrophoresis revealed a Ca2+/calmodulin-dependent and a Ca2+/cAMP-dependent inhibitory effect of S100B, ranging from 62% to 67% of control, on the phosphorylation of the intermediate filament proteins glial fibrillary acidic protein (GFAP) and vimentin. The fact that S100B binds to the N-terminal domain of GFAP and that the two proteins are co-localized in astrocytes suggests a potential in vivo role for S100B in modulating the phosphorylation of intermediate filament proteins in glia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call