Abstract

BackgroundFibroblast dysfunction is the main pathogenic mechanism of idiopathic pulmonary fibrosis (IPF). S100 calcium-binding protein A4 (S100A4) plays critical roles in the proliferation of fibroblasts and in the development of pulmonary, hepatic, and renal fibrosis. However, the clinical implications of S100A4 in IPF have not been evaluated. Methods and materialsThe S100A4 mRNA and protein levels were measured by real-time PCR and immunoblotting in fibroblasts from IPF patients and controls. The S100A4 level was measured by enzyme-linked immunosorbent assay in bronchoalveolar lavage fluid (BALF) from the normal controls (NCs; n = 33) and from patients with IPF (n = 87), non-specific interstitial pneumonia (NSIP; n = 22), hypersensitivity pneumonitis (HP; n = 19), and sarcoidosis (n = 9). S100A4 localization was evaluated by immunofluorescence staining. ResultsThe S100A4 mRNA and protein levels were significantly higher in fibroblasts from IPF patients (n = 14) than in those from controls (n = 10, p < 0.001). The S100A4 protein level in BALF was significantly higher in the IPF (89.25 [49.92–203.02 pg/mL]), NSIP (74.53 [41.88–131.45 pg/mL]), HP (222.36 [104.92–436.92 pg/mL]) and sarcoidosis (101.62 [59.36–300.62 pg/mL]) patients than in the NCs (7.57 [1.31–14.04 pg/mL], p < 0.01, respectively). Cutoff S100A4 levels of 18.85 and 28.88 pg/mL had 87.4% and 87.8% accuracy, respectively, for discriminating IPF and other lung diseases from NCs. ConclusionsS100A4 is expressed by α-SMA-positive cells in the interstitium of the IPF patients. S100A4 may participate in the development of IPF, and its protein level may be a candidate diagnostic and therapeutic marker for IPF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call