Abstract

An abundance analysis of the yellow symbiotic system AG Draconis reveals it to be a metal-poor K giant ([Fe/H] = −1.3) which is enriched in the heavy s-process elements. This star thus provides a link between the symbiotic stars and the binary barium and CH stars which are also s-process enriched. These binary systems, which exhibit overabundances of the heavy elements, owe their abundance peculiarities to mass transfer from thermally-pulsing asymptotic giant branch stars, which have since evolved to become white-dwarf companions of the cool stars we now view as the chemically peculiar primaries. A comparison of the heavy-element abundance distribution in AG Dra with theoretical nucleosynthesis calculations shows that the s-process is defined by a relatively large neutron exposure (τ = 1.3 mb−1), while an analysis of the rubidium abundance suggests that the s-process occurred at a neutron density of about 2 × 108 cm−3. The derived spectroscopic orbit of AG Dra is similar to the orbits of barium and CH stars. Because the luminosity function of low-metallicity K giants is skewed towards higher luminosities by about 2 magnitudes relative to solar-metallicity giants, it is argued that the lower metallicity K giants have larger mass-loss rates. It is this larger mass-loss rate that drives the symbiotic phenomena in AG Dra and we suggest that the other yellow symbiotic stars are probably low-metallicity objects as well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call