Abstract

The S-matrix, its unitarity and the graviton self-energy at the one-loop level are discussed on the basis of quantum Yang-Mills gravity with the translational gauge symmetry in flat space-time. The unitarity and gauge invariance of the S-matrix in a class of gauge conditions is preserved by massless ghost vector particles, called `Feynman-DeWitt-Mandelstam' (FDM) ghosts, in quantum Yang-Mills gravity. Using dimensional regularization, the graviton self-energy are explicitly calculated with a general gauge condition. The resultant divergence of graviton self-energy at the one-loop level resembles to that in quantum electrodynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.