Abstract

SUMO is a ubiquitin-like protein with a number of important biological functions. Increased levels of sumoylation are associated with a number of human diseases, and previous reports have described an evolutionarily conserved "SUMO stress response" (SSR), in which SUMO conjugate levels are markedly increased in response to environmental stresses. However, the connection between cellular stress and sumoylation has remained poorly understood. Here we conduct the first in-depth characterization of the S. cerevisiae SSR. The SUMO system components required to effect it are identified, and SSR kinetics in response to different types of environmental stresses are established. Using mass spectrometry, we identify the principle osmotic shock-associated SSR targets as components of the basal transcription machinery, transcriptional regulators and chromatin remodeling complexes. Consistent with these data, we also observe that the sumoylation of SSR targets is dependent upon, and thus appears to be coupled with, transcription. Together, our data suggest that the SSR is not responsive to environmental stress per se, but more likely reflects a synchronized, transcription-coupled wave of sumoylation that accompanies the rapid, global re-programming of transcription in response to stress. This article is part of a Special Issue entitled: Protein dynamics in health and disease. Guest Editors: Pierre Thibault and Anne-Claude Gingras.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call