Abstract

We use the chiral quark model to construct the complete O( p 2) weak ΔS = 1 chiral lagrangian via the bosonization of the ten relevant operators of the effective quark lagrangian. The chiral coefficients are given in terms of f π the quark and gluon condesates and the scale-dependent NLO Wilson coefficients of the corresponding operators; in addition, they depend on the constituent quark mass M, a parameter characteristic of the model. All contributions of order N c 2 as well as N c and α s N c are included. The γ 5-scheme dependence of the chiral coefficients, computed via dimensional regularization, and the Fierz transformation properties of the operator basis are discussed in detail. We apply our results to the evaluation of the hadronic matrix elements for the decays K → 2 π, consistently including the renormalization induced by the meson loops. The effect of this renormalization is sizable and introduces a long-distance scale dependence that matches in the physical amplitudes the short-distance scale dependence of the Wilson coefficients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.