Abstract

In this paper, we propose a homogeneous curvaton mechanism that operates during the preheating process and in which the effective mass is running (i.e., its potential consists of a coupling term and an exponential term whose contribution is subdominant thereto). This mechanism can be classified into either narrow resonance or broad resonance cases, with the spectral index of the curvaton consituting the deciding criteria. The inflationary potential is that of chaotic inflation (i.e., a quadratic potential), which could result in a smooth transition into the preheating process. The entropy perturbations are converted into curvature perturbations, which we validate using the formalism. By neglecting the exponential term's contribution to the curvaton potential, we calculate the power spectrum and the nonlinear non-Gaussian parameter . Our calculations analytically show that these two observables are independent of the inflaton potential. Finally, when the curvaton decays (and the inflaton field vanishes), the exponential potential approaches a constant value similar to that of the cosmological constant, which may play the role of dark energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.