Abstract

Spatially periodic breather solutions (SPBs) of the nonlinear Schrodinger (NLS) equation, i.e., the heteroclinic orbits of unstable Stokes waves, are typically unstable. In this paper, we study the effects of dissipation on single-mode and multi-mode SPBs using a linearly damped NLS equation. The number of instabilities the background Stokes wave possesses and the damping strength are varied. Viewing the damped dynamics as near integrable, the perturbed flow is analyzed by appealing to the spectral theory of the NLS equation. A broad categorization of the routes to stability of the SPBs and how the route depends on the mode structure of the SPBs and the instabilities of the Stokes wave is obtained as well as the distinguishing features of the damped flow.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.