Abstract

The description of entrainment in turbulent free jets is at the heart of physical models of some major flows in environmental science, from volcanic plumes to the dispersal of pollutant wastes. The classical approach relies on the assumption of complete self-similarity in the flows, which allows a simple parameterization of the dynamical variables in terms of constant scaling factors, but this hypothesis remains under debate. We use in this paper an original parameterization of entrainment and an extensive review of published experimental data to interpret the discrepancy between laboratory results in terms of the systematic evolution of the dynamic similarity of the flow as a function of downstream distance from the source. We show that both jets and plumes show a variety of local states of partial self-similarity in accordance with the theoretical analysis of George (1989), but that their global evolution tends to complete self-similarity via a universal route. Plumes reach this asymptotic regime faster than jets which suggests that buoyancy plays a role in more efficiently exciting large-scale modes of turbulence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.