Abstract
We consider a new class of first order evolutionary variational-hemivariational inequalities for which we prove an existence and uniqueness result. The proof is based on a time-discretization method, also known as the Rothe method. It consists of considering a discrete version of each inequality in the class, proving its unique solvability, and recovering the solution of the continuous problem as the time step converges to zero. Then we introduce a quasi-static frictionless problem for Kelvin--Voigt viscoelastic materials in which the contact is modeled with a nonmonotone normal compliance condition and a unilateral constraint. We prove the variational formulation of the problem cast in the abstract setting of variational-hemivariational inequalities, with a convenient choice of spaces and operators. Further, we apply our abstract result in order to prove the unique weak solvability of the problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.