Abstract

ABSTRACT We compile two samples of cluster galaxies with complimentary hydrodynamic and N-body analysis using flash code to ascertain how their differing populations drive their rotational profiles and to better understand their dynamical histories. We select our main cluster sample from the X-ray Galaxy Clusters Database (BAX), which are populated with Sloan Digital Sky Survey (SDSS) galaxies. The BAX clusters are tested for the presence of substructures, acting as proxies for core mergers, culminating in sub-samples of eight merging and 25 non-merging galaxy clusters. An additional sample of 12 galaxy clusters with known dumbbell components is procured using galaxy data from the NASA/IPAC Extragalactic Database (NED) to compare against more extreme environments. BAX clusters of each sample are stacked on to a common RA–Dec. space to produce rotational profiles within the range of 0.0–2.5 r200. Merging stacks possess stronger core rotation at ≲0.5r200 primarily contributed by a red galaxy sub-population from relaxing core mergers; this is alongside high rotational velocities from blue galaxy sub-populations, until they mix and homogenize with the red sub-populations at ∼r200, indicative of an infalling blue galaxy sub-population with interactive mixing between both sub-populations at ≳ r200. flash code is utilized to simulate the merger phase between two originally independent clusters and test the evolution of their rotational profiles. Comparisons with the dumbbell clusters leads to the inference that the peculiar core rotations of some dumbbell clusters are the result of the linear motions of core galaxies relaxing on to the potential during post second infall.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.