Abstract

Recently Hořava proposed a renormalizable quantum gravity, without the ghost problem, by abandoning Einsteinʼs equal-footing treatment of space and time through the anisotropic scaling dimensions. Since then various interesting aspects, including the exact black hole solutions have been studied but no rotating black hole solutions have been found yet, except some limiting cases. In order to fill the gap, I consider a simpler three-dimensional set-up with z=2 and obtain the exact rotating black hole solution. This solution has a ring curvature singularity inside the outer horizon, like the four-dimensional Kerr black hole in Einstein gravity, as well as a curvature singularity at the origin. The usual mass bound works also here but in a modified form. Moreover, it is shown that the conventional first law of thermodynamics with the usual Hawking temperature and chemical potential does not work, which seems to be the genuine effect of Lorentz-violating gravity due to lack of the absolute horizon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call