Abstract

The component of ground reaction force (GRF) acting perpendicular to the leg in the sagittal plane during human locomotion (acting in a rotary direction) has not been systematically investigated and is not well understood. In this paper, we investigate this rotary component of the GRF of 11 human subjects (mean age ± s.d.: 26.6 ± 2.9 years) while walking and speed walking on a treadmill, along with eight human subjects (mean age ± s.d.: 26.3 ± 3.1) running on a treadmill. The GRF on both legs was measured, along with estimates of the subject's mass centre and the centre of pressure of each foot to yield total leg lengths and leg angle. Across all steady walking and running speeds, we find that the rotary component of the GRF has significant magnitude (peak values from 5% to 38% of body weight, from slow walking to moderate running, respectively) and implies leg propulsion of the mass centre in the rotary direction. Furthermore, peak rotary force magnitude over stance increases with locomotion speed for both walking and running ( p < 0.05), and the time-averaged (mean) rotary force shows a slight increase with walking speed (though the mean force trend is uncertain for running). Also, an estimate of average power input from the rotary force of the leg acting at the mass centre shows moderate and strong positive correlation with locomotion speed for running and walking respectively ( p < 0.05). This study also shows that the rotary force acts differently in walking versus running: rotary force is predominantly positive during running, but during walking it exhibits both positive and negative phases with net positive force found over the whole stride.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call