Abstract

We study the classical Rosenthal–Szasz inequality for a plane whose geometry is determined by a norm. This inequality states that the bodies of constant width have the largest perimeter among all planar convex bodies of given diameter. In the case where the unit circle of the norm is given by a Radon curve, we obtain an inequality which is completely analogous to the Euclidean case. For arbitrary norms we obtain an upper bound for the perimeter calculated in the anti-norm, yielding an analogous characterisation of all curves of constant width. To derive these results, we use methods from the differential geometry of curves in normed planes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.