Abstract

The enzyme NADPH oxidase 1 (NOX1) is a major producer of superoxide which together with other reactive oxygen and nitrogen species (ROS/RNS) are implicated in maintaining a healthy epithelial barrier in the gut. While previous studies have indicated NOX1's involvement in microbial modulation in the small intestine, less is known about the effects of NOX1-dependent ROS/RNS formation in the colon. We investigated the role of NOX1 in the colon of NOX1 knockout (KO) and wild type (WT) mice, under mild and subclinical low-grade colon inflammation induced by 1% dextran sulfate sodium (DSS). Ex vivo imaging of ROS/RNS in the colon revealed that absence of NOX1 strongly decreased ROS/RNS production, particularly during DSS treatment. Furthermore, while absence of NOX1 did not affect disease activity, some markers of inflammation (mRNA: Tnfa, Il6, Ptgs2; protein: lipocalin 2) in the colonic mucosa tended to be higher in NOX1 KO than in WT mice following DSS treatment. Lack of NOX1 also extensively modulated the bacterial community in the colon (16S rRNA gene sequencing), where NOX1 KO mice were characterized mainly by lower α-diversity (richness and evenness), higher abundance of Firmicutes, Akkermansia, and Oscillibacter, and lower abundance of Bacteroidetes and Alistipes. Together, our data suggest that NOX1 is pivotal for colonic ROS/RNS production in mice both during steady-state (i.e., no DSS treatment) and during 1% DSS-induced low-grade inflammation and for modulation of the colonic microbiota, with potential beneficial consequences for intestinal health.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call