Abstract

The ropelength of a knot is the minimum contour length of a tube of unit radius that traces out the knot in three dimensional space without self-overlap, colloquially the minimum amount of rope needed to tie a given knot. Theoretical upper and lower bounds have been established for the asymptotic relationship between crossing number and ropelength and stronger bounds have been conjectured, but numerical bounds have only been calculated exhaustively for knots and links with up to 11 crossings, which are not sufficiently complex to test these conjectures. Existing ropelength measurements also have not established the complexity required to reach asymptotic scaling with crossing number. Here, we investigate the ropelength of knots and links beyond the range of tested crossing numbers, past both the 11-crossing limit as well as the 16-crossing limit of the standard knot catalogue. We investigate torus knots up to 1023 crossings, establishing a stronger upper bound for T(p, 2) knots and links and demonstrating power-law scaling in T(p, p + 1) below the proven limit. We investigate satellite knots up to 42 crossings to determine the effect of a systematic crossing-increasing operation on ropelength, finding that a satellite knot typically has thrice the ropelength of its companion. We find that ropelength is well described by a model of repeated Hopf links in which each component adopts a minimal convex hull around the cross-section of the others, and derive formulae that heuristically predict the crossing-ropelength relationship of knots and links without free parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.