Abstract

To analyze the root-soil water relationship at the stand level, we integrated ground-penetrating radar (GPR), which characterized the distribution of lateral coarse roots (>2 mm in diameter) of shrubs (Caragana microphylla Lam.), with soil core sampling, which mapped soil water content (SWC) distribution. GPR surveys and soil sampling were carried out in two plots (Plot 1 in 2017 and Plot 2 in 2018) with the same size (30 × 30 m2) in the sandy soil of the semi-arid shrubland in northern China. First, the survey area was divided into five depth intervals, i.e., 0–20, 20–40, 40–60, 60–80, and 80–100 cm. Each depth interval was then divided into three zones in the horizontal direction, including root-rich canopy-covered area, root-rich canopy-free area, and root-poor area, to indicate different surface distances to the canopy. The generalized additive models (GAMs) were used to analyze the correlation between root distribution density and SWC after the spatial autocorrelation of each variable was eliminated. Results showed that the root-soil water relationship varies between the vertical and horizontal directions. Vertically, more roots are distributed in soil with high SWC and fewer roots in soil with low SWC. Namely, root distribution density is positively correlated with SWC in the vertical direction. Horizontally, the root-soil water relationship is, however, more complex. In the canopy-free area of Plot 1, the root-soil water relationship was significant (p < 0.05) and negatively correlated in the middle two depth intervals (20–40 cm and 40–60 cm). In the same two depth intervals in the canopy-free area of Plot 2, the root-soil water relationship was also significant (p < 0.01) but non-monotonic correlated, that is, with the root distribution density increasing, the mean SWC decreased first and then increased. Moreover, we discussed possible mechanisms, e.g., root water uptake, 3D root distribution, preferential flow along roots, and different growing stages, which might lead to the spatially anisotropic relationship between root distribution and SWC at the stand level. This study demonstrates the advantages of GPR in ecohydrology studies at the field scale that is challenging for traditional methods. Results reported here complement existing knowledge about the root-soil water relationship in semi-arid environments and shed new insights on modeling the complex ecohydrological processes in the root zone.

Highlights

  • The root-soil water relationship has been increasingly recognized as a vital component of the Earth’s surface ecosystem, determining plants’ growth and succession in arid and semi-arid ecosystems [1,2,3,4]

  • This study provides implications for the use of groundpenetrating radar (GPR) in the study of the root-soil water relationship at the shrub stand level, which is challenging for traditional methods

  • In the canopy-covered area, there was no significant correlation between root distribution density and mean soil water content (SWC) in each depth interval of Plot 1 and Plot 2

Read more

Summary

Introduction

The root-soil water relationship has been increasingly recognized as a vital component of the Earth’s surface ecosystem, determining plants’ growth and succession in arid and semi-arid ecosystems [1,2,3,4]. It influences the water cycle [5], critical zone processes [6], Remote Sens. The root-soil water relationship represents various integrated water transport functions, so it is inherently complex. An exploration of the root-soil water relationship is vital for a strong understanding of the interactions between roots, soil, and surface water circulation

Objectives
Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call