Abstract
Using models of serum deprivation and 1-methyl-4-phenylpyridinium (MPP(+)), we investigated the mechanism by which thioredoxin (Trx) exerts its antiapoptotic protection in human neuroblastoma cells (SH-SY5Y) and preconditioning-induced neuroprotection. We showed that SH-SY5Y cells are highly sensitive to oxidative stress and responsive to both extracellularly administered and preconditioning-induced Trx. Serum deprivation and MPP(+) produced an elevation in the hydroxyl radicals, malondialdehyde and 4-hydroxy-2,3-nonenal (HNE), causing the cells to undergo mitochondria-mediated apoptosis. Trx in the submicromolar range blocked the observed apoptosis via a multiphasic protection mechanism that includes the suppression of cytochrome c release (most likely via the induction of Bcl-2), the inhibition of procaspase-9 and procaspase-3 activation, and the elevated level of Mn-SOD. The reduced form of Trx suppresses the serum-free-induced hydroxyl radicals, lipid peroxidation, and apoptosis, indicating that H(2)O(2) is removed by Trx peroxidase. The participation of Trx in preconditioning-induced neuroprotection is supported by the observation that inhibition of Trx synthesis with antisense oligonucleotides or of Trx reductase drastically reduced the hormesis effect. This effect of Trx-mediated hormesis against oxidative stress-induced apoptosis is striking. It induced a 30-fold shift in LD(50) in the MPP(+)-induced neurotoxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.