Abstract

The wideband semiconducting metal oxide TiO <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> and Nb <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> O <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">5</inf> thin films have been deposited onto FTO substrates by sol-gel method for the fabrication of inverted hybrid photovoltaics. A thin metal oxide film of approximately 10 nm in thickness between the electron collecting electrode and the photoactive blend of poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) has been demonstrated to be necessary to promote the formation of continuous uniform PCBM film to block holes from being recombined with good power conversion efficiency of 2.8% and much enhanced stability. In spite the fact that the conduction band of Nb <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> O <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">5</inf> is higher than the LUMO of PCBM, a power conversion of 2.7% was achieved, a very small difference in comparison with TiO <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> hybrid solar cells (2.8%). Increased thickness of dense metal oxide film leads to decreased fill factor, current density, and thus the power conversion efficiency. The above experimental results suggest that electrons from LOMO energy level of P3HT and PCBM can tunnel through dense metal oxide film to charge collecting FTO substrate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.