Abstract

Thrombopoietin (TPO) stimulates a network of intracellular signaling pathways that displays extensive cross-talk. We have demonstrated previously that the ERK/mitogen-activated protein kinase pathway is important for TPO-induced endomitosis in primary megakaryocytes (MKs). One known pathway by which TPO induces ERK activation is through the association of Shc with the penultimate phosphotyrosine within the TPO receptor, Mpl. However, several investigators found that the membrane-proximal half of the cytoplasmic domain of Mpl is sufficient to activate ERK in vitro and support base-line megakaryopoiesis in vivo. Using BaF3 cells expressing a truncated Mpl (T69Mpl) as a tool to identify non-Shc/Ras-dependent signaling pathways, we describe here novel mechanisms of TPO-induced ERK activation mediated, in part, by phosphoinositide 3-kinase (PI3K). Similar to cells expressing full-length receptor, PI3K was activated by its incorporation into a complex with IRS2 or Gab2. Furthermore, the MEK-phosphorylating activity of protein kinase Czeta (PKCzeta) was also enhanced after TPO stimulation of T69Mpl, contributing to ERK activity. PKCzeta and PI3K also contribute to TPO-induced ERK activation in MKs, confirming their physiological relevance. Like in BaF3 cells, a TPO-induced signaling complex containing p85PI3K is detectable in MKs expressing T61Mpl and is probably responsible for PI3K activation. These data demonstrate a novel role of PI3K and PKCzeta in steady-state megakaryopoiesis.

Highlights

  • Binding of TPO1 to its receptor, the product of the protooncogene c-mpl, activates a wide variety of signaling molecules and pathways

  • We have demonstrated previously that the ERK/mitogen-activated protein kinase pathway is important for TPO-induced endomitosis in primary megakaryocytes (MKs)

  • We demonstrated previously that the ERK/MAPK pathway is activated in response to TPO in both a BaF3 cell line engineered to express full-length Mpl (BaF3/Mpl) and in primary MKs, and plays an important role in MK endomitosis [4]

Read more

Summary

Introduction

Binding of TPO1 to its receptor, the product of the protooncogene c-mpl, activates a wide variety of signaling molecules and pathways. Using BaF3 cells expressing a truncated Mpl (T69Mpl) as a tool to identify non-Shc/Ras-dependent signaling pathways, we describe here novel mechanisms of TPO-induced ERK activation mediated, in part, by phosphoinositide 3-kinase (PI3K). We demonstrated previously that the ERK/MAPK pathway is activated in response to TPO in both a BaF3 cell line engineered to express full-length Mpl (BaF3/Mpl) and in primary MKs, and plays an important role in MK endomitosis [4].

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call