Abstract

Microtubules (MTs) are essential structural elements of cells. MT stability and dynamics play key roles in integrity of cell morphology and various cellular activities. The MT-associated proteins (MAPs) are specialized proteins that interact with MT and induce MT assemble into distinct arrays. Microtubule-associated protein 4 (MAP4), a member of MAPs family, ubiquitously expressed in both neuronal and non-neuronal cells and tissues, plays a key role in regulating MT stability. Over the past 40 years or so, the mechanism of MAP4 regulating MT stability has been well studied. In recent years, more and more studies have found that MAP4 affects the activities of sundry human cells through regulating MT stability with different signaling pathways, plays important roles in the pathogenesis of a number of disorders. The aim of this review is to outline the detailed regulatory mechanisms of MAP4 in MT stability, and to focus on its specific mechanisms in wound healing and various human diseases, thus to highlight the possibility of MAP4 as a future therapeutic target for accelerating wound healing and treating other disorders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call