Abstract
Lung cancer is the most devastating malignancy in the world. Beyond genetic research, epigenomic studies—especially investigations of microRNAs—have grown rapidly in quantity and quality in the past decade. This has enriched our understanding about basic cancer biology and lit up the opportunities for potential therapeutic development. In this review, we summarize the involvement of microRNAs in lung cancer carcinogenesis and behavior, by illustrating the relationship to each cancer hallmark capability, and in addition, we briefly describe the clinical applications of microRNAs in lung cancer diagnosis and prognosis. Finally, we discuss the potential therapeutic use of microRNAs in lung cancer.
Highlights
Lung cancer is the leading cause of cancer deaths worldwide
The miR-200 family is the best-known example to be involved in this process. miR-200 targets zinc finger E-box-binding homeobox (ZEB)1 and ZEB2, which code for the transcriptional repressors of E-cadherin
The downregulation of miR-144 in lung cancer cells may upregulate the glucose transporter (GLUT1) expression and increase glucose uptake [56]. miR-33b negatively regulates lactate dehydrogenase A (LDHA), an enzyme needed in glucose metabolism, and inhibits non-small-cell lung cancer (NSCLC) cell growth [57]
Summary
Lung cancer is the leading cause of cancer deaths worldwide. In the GLOBOCAN 2018 database, 2.09 million new cases and 1.76 million deaths from lung cancers are estimated [1]. The miRNA precursors, pri-miRNAs, are large miRNAs (>100 nucleotides in length) transcribed by RNA polymerase II and subsequently processed, intranuclearly, by the RNase III enzyme, Drosha, and the double-stranded RNA (dsRNA)-binding protein, Pasha ( known as DiGeorge Syndrome critical region gene 8, DGCR8) [8]. The product of this process is called pre-miRNA, with a length of ~70 nucleotides. The pre-miRNAs are transported into cytoplasm by a RanGTP-dependent dsRNA-binding protein, exportin 5 [9] In the cytoplasm, another RNase III enzyme, Dicer, processes the pre-miRNAs into the miRNA:miRNA duplex of ~22 nucleotides. MiRNAs play a key role in genomic and epigenomic interaction [14]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.