Abstract
The delivery of gonadotropin-releasing hormone (GnRH) in a pulsatile mode to the gonadotropes has long been known to be essential for normal reproductive function. There have been numerous studies aimed at dissecting out the mechanisms underlying GnRH pulse generation. The discovery of kisspeptin as an upstream regulator of GnRH attracted the possibility that pulsatile kisspeptin governed the pulsatile secretion of GnRH. Subsequent studies have shown the importance of the neurokinin B (NKB) system in modulating kisspeptin secretion and this GnRH. A number of studies in laboratory rodents have supported this notion. By contrast, we present data from clinical studies in men and women, in a range of contexts, showing that continuous infusion of kisspeptin 10 at receptor-saturating levels gives rise to an increase in luteinizing hormone (LH) (GnRH) pulse frequency. This has been demonstrated in normal healthy and hypogonadal men, in normal women during the mid-cycle LH surge, in men and women with mutations in the genes encoding NKB or its receptor, neurokinin 3 receptor (NK3R), in women with polycystic ovary syndrome treated with NK3R antagonist, and in women treated with NK3R antagonist during the LH surge. These finds indicate that pulsatile secretion and action of kisspeptin on GnRH neurons is not required for the generation of LH (GnRH) pulses in humans. We also report that there is an absence of desensitization in humans exposed to continuous infusion of kisspeptin-10 at receptor-saturating concentrations over 22h and briefly review GnRH, kisspeptin and NKB analogs and their clinical application.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.