Abstract
A solid state phase transformation of Ti-6Al-4V was studied using high speed in situ x-ray diffraction measurements made during rapid cooling of a cold metal transfer arc weld bead deposited onto a water cooled substrate. Analysis of body centered cubic (BCC) and hexagonal close packed (HCP) lattices revealed an abrupt, nonlinear shift in the lattice parameters of both phases just after the HCP phase had nucleated. Postmortem transmission electron microscopy confirmed that V diffusion was mostly suppressed during cooling. Together, these results indicate that at this cooling rate of approximately 104 K/s, which is representative of cooling rates of many additive manufacturing and welding processes, kinematic coherency of the BCC–HCP interfaces gives rise to the anomalous lattice expansion and contraction behaviors of both phases during the initial nucleation and growth stages of (mostly) martensitic transformation from BCC to HCP; the role of diffusion in such lattice anomalies is shown to be minimal.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.