Abstract
The relationship between body mass and the respiratory microenvironment of burrowing animals is examined using artificial burrows containing surrogate animals that simulate O2 consumption by removal of air and simultaneous replacement with N2. Allometric relationships between body mass and burrow radius, nest chamber radius, and O2 consumption rate show that published mathematical predictions of diffusion-mediated gas exchange are adequate to describe the respiratory environments of animals in small blind-ending burrows through porous substrata. Diffusion is sufficient to ventilate burrows containing small mammals weighing less than 340g, or subterranean nest chambers connected to the surface by one or more tunnels containing mammals weighing less than 30kg. Outside of these limits, convection prevails and prevents the development of hypoxic conditions, particularly in burrows of mammals weighing more than 1300g.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.