Abstract

In this study, low-temperature catalytic NO oxidation with H2O2 over Na- and H-exchanged Y and ZSM-5 zeolites was investigated at 140 °C which is the average exhaust temperature of coal-fired power plant. Fast catalytic NO oxidation rates were observed over H-zeolites, and catalytic activity was proportional to the amount of Brønsted acid sites. HZSM-5 and HY zeolites show 65% and 95% NO removal efficiency, respectively, but the catalytic stability of HY was lower than HZM-5 due to partial dealumination during the reaction. In-situ DRIFTS analysis showed that NO+ species coordinated at framework sites played a direct role in the catalytic NO oxidation. Moreover, the possible reaction pathway was proposed to elucidate the mechanism of NO oxidation with H2O2 catalyzed over Brønsted acid sites. The effect of reaction temperature, H2O2 concentration, H2O2 flow and SO2 concentration on NO oxidation were investigated over H-zeolites. The experimental results indicated that the NO removal efficiency was increased with the increase of H2O2 concentration, but decreased with the increase of SO2 concentration. The NO removal efficiency first increased and then decreased with the increase of H2O2 flow and reaction temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call