Abstract

Erythropoietin (EP) is required by late-stage erythroid progenitor cells to prevent apoptosis. Several lines of evidence suggest that it is this action of EP that regulates erythrocyte production in vivo. To study the control of apoptosis in mouse and human erythroblasts, the expression of members of the Bcl-2 family of proteins and the expression and activation of the apoptosis-linked cysteine protease Yama/CPP32/apopain were examined. These proteins have been implicated as regulators of apoptosis in several cell models. The Bcl-2 family members analyzed were Bcl-2, Bcl-X, Bax, Bad, Bak, A1, and Mcl-1. Bcl-X expression in proerythroblasts was highly EP-dependent. Bcl-X was strongly increased during the terminal differentiation stages of human and mouse erythroblasts, reaching maximum transcript and protein levels at the time of maximum hemoglobin synthesis. This increase in Bcl-X expression led to an apparent level of approximately 50 times the level in proerythroblasts. In contrast, neither mouse nor human erythroblasts expressed Bcl-2 transcript or protein. Bax and Bad proteins remained relatively constant throughout differentiation, but diminished near the time of enucleation. Bak protein was present in early erythroblasts, but diminished progressively during differentiation. EP deprivation in both mouse and human erythroblasts led to activation of the cysteine protease, apopain, as was indicated by cleavage of the proenzyme into its proteolytically active fragments. Apopain activation was detectable within 2 hours of EP deprivation in mouse erythroblasts. These findings suggest an important role for Bcl-X in late erythroid differentiation and for apopain in apoptosis of erythroblasts caused by deprivation of EP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call