Abstract

Membrane-based separation processes has been recently of significant global interest compared to other conventional separation approaches due to possessing undeniable advantages like superior performance, environmentally-benign nature and simplicity of application. Computational simulation of fluids has shown its undeniable role in modeling and simulation of numerous physical/chemical phenomena including chemical engineering, chemical reaction, aerodynamics, drug delivery and plasma physics. Definition of fluids can be occurred using the Navier–Stokes equations, but solving the equations remains an important challenge. In membrane-based separation processes, true perception of fluid’s manner through disparate membrane modules is an important concern, which has been significantly limited applying numerical/computational procedures such s computational fluid dynamics (CFD). Despite this noteworthy advantage, the optimization of membrane processes using CFD is time-consuming and expensive. Therefore, combination of artificial intelligence (AI) and CFD can result in the creation of a promising hybrid model to accurately predict the model results and appropriately optimize membrane processes and phase separation. This paper aims to provide a comprehensive overview about the advantages of commonly-employed ML-based techniques in combination with the CFD to intelligently increase the optimization accuracy and predict mass transfer and the unfavorable events (i.e., fouling) in various membrane processes. To reach this objective, four principal strategies of AI including SL, USL, SSL and ANN were explained and their advantages/disadvantages were discussed. Then after, prevalent ML-based algorithm for membrane-based separation processes. Finally, the application potential of AI techniques in different membrane processes (i.e., fouling control, desalination and wastewater treatment) were presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.