Abstract

T cell extravasation into perivascular tissue during inflammation involves transmigration through the endothelial cell (EC) layer and basement membrane. We have demonstrated that matrix metalloxproteinase-2 (MMP-2) is induced in T cells upon adhesion to endothelial cells and that the induction of MMP-2 is mediated by binding of T cell VLA-4 to VCAM-1. Cloned murine Th1 cells antigenic to myelin basic protein, either expressing VLA-4 on their cell surface and causing experimental autoimmune encephalomyelitis (EAE) or not expressing VLA-4 and not causing EAE, were used. VLA-4 positive (+) T cells that adhered to VCAM-1 positive (+) endothelial cells exhibited an induction in MMP-2 mRNA, protein, and activity, whereas MMP-2 was not induced in the T cells that adhered to the VCAM-1 negative (-) endothelial cells or VLA-4 negative (-) T cells that adhered to VCAM-1+ endothelial cells. Incubating T cells with rVCAM-1-coated dishes showed that VLA-4+ T cells adhered to the molecule and that adhesion to rVCAM-1 was sufficient to induce MMP-2. VLA-4+ T cells that had transmigrated through a VCAM-1+ endothelial cell monolayer exhibited MMP-2 activity. TIMP-2 was shown to reduce T cell transmigration in vitro. Transmigrated T cells exhibited downregulation of VLA-4 and LFA-1 integrin surface expression and decreased binding to rVCAM-1 and rICAM-1 and increased binding to collagens I and IV, fibronectin, and laminin. Brain sections of mice demonstrated that as T cells migrated farther into the tissue, VLA-4 expression was lost, although CD4 expression remained unchanged. These results demonstrate that binding to VCAM-1 on endothelial cells induces MMP-2 in T cells, which, in turn, may facilitate T cell migration into perivascular tissue. The significance of these findings in the modulation of the inflammatory response is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.