Abstract

We investigated the conservation of sidechain conformation for each residue within a homologous family of proteins in the Protein Data Bank (PDB) and performed sidechain modeling using this information. The information was represented by the probability of conserved sidechain torsional angles obtained from many families of proteins, and these were calculated for a pair of residues at topologically equivalent positions as a result of structural alignment. Probabilities were obtained for a pair of same amino acids and for a pair of different amino acids. The correlation between environmental residues and the fluctuation of probability was examined for the pair of same amino acid residues, and the simple probability was calculated for the pair of different amino acids. From the results on the same amino acid pairs, 17 amino acids, except for Ala, Gly, and Pro, were divided into two types: those that were influenced and those that were not influenced by the environmental residues. From results on different amino acid pairs, a replacement between large residues, such as Trp, Phe, and Tyr, was performed assuming conservation of their torsional angles within a homologous family of proteins. We performed sidechain modeling for 11 known proteins from their native and modeled backbones, respectively. With the native backbones, the percentage of the χ1 angle correct within 30° was found to be 67% and 80% for all and core residues, respectively. With the modeled backbones, the percentage of the correct χ1 angle was found to be 60% and 72% for all and core residues, respectively. To estimate an upper limit on the accuracy for predicting sidechain conformations, we investigated the probability of conserved sidechain torsional angles for highly similar proteins having > 90% sequence identity and <2.5-Å X-ray resolution. In those proteins, 83% of the sidechain conformations were conserved for the χ1 angle. Proteins 31:355–369, 1998. © 1998 Wiley-Liss, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.