Abstract
The production of the reactive oxygen species superoxide and hydrogen peroxide in Saccharomyces cerevisiae induces the expression of various defence genes involved in an oxidative stress response. Expression of many of these genes has been shown to be coordinated by two transcriptional regulators, Yap1p and Skn7p, either alone or in concert. Here, we investigated the role of the Yap1p and Skn7p-mediated stress response in the defence against singlet oxygen, a non-radical reactive oxygen species produced mainly by photosensitized reactions in illuminated cells. Both, a yap1 and skn7 mutant were highly sensitive to Rose Bengal, an exogenous photosensitizer producing singlet oxygen in the light. The expression of a Yap1p-dependent reporter gene was induced by increased singlet oxygen production, showing that singlet oxygen activates general oxidative stress response mechanisms required for the resistance against Rose Bengal treatment. This response was also slightly stimulated by light in the absence of the photosensitizer, possibly due to singlet oxygen production by endogenous photosensitizers. The expression pattern of four oxidative stress genes in a yap1, skn7 and wild-type strain and the sensitivity of the corresponding mutants exposed to different oxidative stress conditions proved a role of Yap1p and Skn7p in the defence against singlet oxygen. Similarities in the genetic responses against singlet oxygen and hydroperoxides suggest an overlap in the oxidative stress response against these reactive oxygen species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.