Abstract

Prefrontal cortex executive functions, such as working memory (WM) interact with limbic processes to foster impulse control. Such an interaction is referred to in a growing body of publications by terms such as cognitive control, cognitive inhibition, affect regulation, self-regulation, top-down control, and cognitive–emotion interaction. The rising trend of research into cognitive control of impulsivity, using various related terms reflects the importance of research into impulse control, as failure to employ cognitions optimally may eventually result in mental disorder. Against this background, we take a novel approach using an impulse control spectrum model – where anorexia nervosa (AN) and substance use disorder (SUD) are at opposite extremes – to examine the role of WM for cognitive control. With this aim, we first summarize WM processes in the healthy brain in order to frame a systematic review of the neuropsychological, neural and genetic findings of AN and SUD. In our systematic review of WM/cognitive control, we found n = 15 studies of AN with a total of n = 582 AN and n = 365 HC participants; and n = 93 studies of SUD with n = 9106 SUD and n = 3028 HC participants. In particular, we consider how WM load/capacity may support the neural process of excessive epistemic foraging (cognitive sampling of the environment to test predictions about the world) in AN that reduces distraction from salient stimuli. We also consider the link between WM and cognitive control in people with SUD who are prone to ‘jumping to conclusions’ and reduced epistemic foraging. Finally, in light of our review, we consider WM training as a novel research tool and an adjunct to enhance treatment that improves cognitive control of impulsivity.

Highlights

  • Cognitive control of appetite in anorexia nervosa (AN) can itself become rewarding, rigid and deeply ingrained, switching from deliberative and recreational to habitual and compulsive, hijacking dopaminergic networks in the brain akin to the addiction process (Everitt, 2014; O’Hara et al, 2015). It is against this background that the present systematic review of AN and substance use disorder (SUD) aims to progress the theoretical perspective posed by the impulse control spectrum model, with a structured review of the neurobiological substrates of working memory (WM) processes

  • The major suggestion, or ‘red line’ throughout this article was that WM capacity, which supports the verbal repetition of cognitive strategies that aid in the experience of cognitive control and epistemic foraging for beliefs about the future, may not be limited to ‘seven plus or minus two’ (Miller, 1956) but can be widened, deepened, strengthened or made more flexible by repetitive use of WM

  • WM has a long history of being associated with cognitive control (e.g., Goldman-Rakic, 1995, 1998; Bechara, 2005) and supports healthy epistemic foraging of information from internal or external cues that help guide decisions and behavior

Read more

Summary

Introduction

‘Can we learn about the treatment of substance use disorder (SUD) from the neural correlates of anorexia nervosa (AN)?’, is a question that has recently been debated in line with a spectrum model of impulse control (Figure 1) (Brooks et al, 2012b; Brooks, 2016). Cognitive control of appetite in AN can itself become rewarding, rigid and deeply ingrained, switching from deliberative and recreational (e.g., occasional dieting) to habitual and compulsive, hijacking dopaminergic networks in the brain akin to the addiction process (Everitt, 2014; O’Hara et al, 2015) It is against this background that the present systematic review of AN and SUD aims to progress the theoretical perspective posed by the impulse control spectrum model (ibid), with a structured review of the neurobiological substrates of WM processes (e.g., neuropsychological, neural, and genetic). After introducing some of the latest neuroscientific theories of WM and processes related to cognitive control, we systematically review findings regarding WM and cognitive control in AN and SUD – populations that underpin the major tenets of the impulse control spectrum model (ibid).

Objectives
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.