Abstract
To summarize the active changes of Wnt signaling pathway in osteoarthritis (OA) as well as the influence and mechanism of dual-targeted regulation on cartilage and subchondral bone and the role of crosstalk between them on OA process. The relevant literature concerning the articular cartilage, subchondral bone, and crosstalk between them in OA and non-OA states by Wnt signaling pathway in vivo and vitro experimental studies and clinical studies in recent years was reviewed, and the mechanism was analyzed and summarized. Wnt signaling can regulate the differentiation and function of chondrocytes and osteoblasts through the classic β-catenin-dependent or non-classical β-catenin-independent Wnt signaling pathway and its cross-linking with other signaling pathways, thereby affecting the cartilage and bone metabolism. Moreover, Wnt signaling pathway can activate the downstream protein Wnt1-inducible-signaling pathway protein 1 to regulate the progress of OA and it also can be established gap junctions between different cells in cartilage and subchondral bone to communicate molecules directly to regulate OA occurrence and development. Intra-articular injection of Wnt signaling inhibitor SM04690 can inhibit the progress of OA, and overexpression of Wnt signaling pathway inhibitor Dickkopf in osteoblasts can antagonize the role of vascular endothelial growth factor work on chondrocytes and inhibit the catabolism of its matrix. The regulation of metabolism and function of cartilage and subchondral bone and crosstalk between them is through interactions among Wnt signaling pathway and molecules of other signaling. Therefore, it plays an vital role in the occurrence and development of OA and is expected to become a new target of OA treatment through intervention and regulation of Wnt signaling pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Zhongguo xiu fu chong jian wai ke za zhi = Zhongguo xiufu chongjian waike zazhi = Chinese journal of reparative and reconstructive surgery
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.