Abstract

Wingless-type mouse mammary tumor virus integration site (WNT) signaling molecules are locally secreted glycoproteins that play important role in regulation of ovarian follicle maturation and steroid production. Components of the WNT signaling pathway have been demonstrated to impact reproductive functions, including embryonic development of the sex organs and regulation of follicle maturation controlling steroidogenesis in the postnatal ovary. Emerging evidence underscores the complexity of WNT signaling molecules in regulation of dynamic changes that occur in the ovary during the reproductive cycle. While disruption in the WNT signaling cascade has been recognized to have deleterious consequences to normal sexual development, more recent studies are beginning to highlight the importance of these molecules in adult ovarian function related to follicle development, corpus luteum formation, steroid production and fertility. Hormonal regulation of WNT genes and expression of members of the WNT signaling network, including WNT ligands, frizzled receptors, and downstream signaling components that are expressed in the postnatal ovary at distinct stages of the estrous cycle suggest a crucial role in normal ovarian function. Similarly, FSH stimulation of T-cell factor-dependent gene expression requires input from β-catenin, a lynchpin molecule in canonical WNT signaling, further indicating β-catenin participation in regulation of follicle maturation. This review will focus on the multiple functions of WNT signaling in folliculogenesis in the adult ovary.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call