Abstract

ABSTRACT The uptake of water by haploid and diploid sibling embryos of Xenopus laevis has been investigated by measuring the density changes which occur during the development of intact embryos from the blastula to the late tail-bud stage, and of explants from which most of the presumptive endoderm has been removed. The results show that up to the mid-gastrula stage there is no difference between the haploid and diploid embryos; but from then on, whereas the diploid volume increases steadily, the haploid gastrulae undergo a series of cyclical volume changes due to loss of fluid through the blastopore. It is concluded that this is the result of an excessive inflow of water through the haploid ectoderm, because it was found that the volume of haploid ectodermal explants increased much more rapidly than the volume of similar diploid explants. Excess flow through the haploid ectoderm also accounts for other characteristics of the haploid syndrome-microcephaly and lordosis. It is suggested that it is the doubling of the cell number in haploid embryos with the consequent 25% increase in aggregate cell membrane area which accounts for the difference between the uptake of water by the two types of embryos. It is also suggested that changes in the rate of water flow through the ectoderm and endoderm which are thought to account for the accumulation of water in the blastocoel and archenteron in the normal diploid embryo arise in a similar way.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call