Abstract

The role of water vapour in ZnO nanostructures for humidity sensing at room temperature is presented and discussed. Experimental and theoretical results demonstrate that ZnO nanoparticles and nanorods, show different physico-chemical behaviour under different relative humidity atmospheres. While electrical current density increases as RH does in the case of the ZnO nanoparticles, ZnO nanorods show inverse behaviour. These facts are related to the capillary condensation and water electric dipole moment effects, respectively. Additionally, a simultaneous validation between the sensor developed and a commercial device corroborates the potential application of this kind of low-cost sensing nanostructures presented in this work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.