Abstract

The concept that voltage-dependent Ca2+ influx is essential in the aldosterone stimulating action of angiotensin II (AII) has been recently challenged by the demonstration of the dihydropyridine (DHP) insensitive 'capacitative' Ca2+ uptake mechanism. The DHP-sensitivity of AII-induced aldosterone secretion is still to be explained. In rat glomerulosa cells the lag phase of AII-induced depolarization is more than 30 s, and there is no enhanced Ca2+ influx within the first min of stimulation. Yet we observed that DHPs as well as diltiazem influenced also the peak of cytoplasmic Ca2+ signal, although the peak (approximately 12 s) is attributed to Ca2+ release alone. Nifedipine reduced the Ca2+ transient induced by AII even after complete inhibition of Ca2+ channel activity. Recalling the loose attachment of InsP3 receptors (IP3R) to the plasma membrane, and the homology between the cytosolic domain of IP3R and the Ca2+ release channel (ryanodine receptor) of skeletal muscle, we proposed that DHP-sensitive L-type Ca2+ channels (DHP receptors) influence InsP3-induced Ca2+ release rather than Ca2+ influx in AII-stimulated cells. Although the dominant isoform is the neuroendocrine (D) one, the skeletal muscle isoform of L-type voltage-dependent Ca2+ channel is also expressed in rat glomerulosa cells. This isoform may be a candidate for protein-protein interaction between DHPR and subplasmalemmal IP3R, similarly to that occurring between DHP receptors and ryanodine receptors in skeletal muscle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call