Abstract
Many andesitic volcanoes exhibit effusive eruption activity, with magma volumes as large as 10(7)-10(9) m(3) erupted at rates of 1-10 m(3) x s(-1) over periods of years or decades. During such eruptions, many complex cycles in eruption rates have been observed, with periods ranging from hours to years. Longer-term trends have also been observed, and are thought to be associated with the continuing recharge of magma from deep in the crust and with waning of overpressure in the magma reservoir. Here we present a model which incorporates effects due to compressibility of gas in magma. We show that the eruption duration and volume of erupted magma may increase by up to two orders of magnitude if the stored internal energy associated with dissolved volatiles can be released into the magma chamber. This mechanism would be favoured in shallow chambers or volatile-rich magmas and the cooling of magma by country rock may enhance this release of energy, leading to substantial increases in eruption rate and duration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.