Abstract

The effect of vitamin D3 on medullary bone formation was investigated in egg-laying Japanese quail and in immature male chicks treated with sex hormones. When laying quail were fed a vitamin D-deficient diet for 16 days, their eggshell weights and egg production rate were markedly reduced in a time-dependent manner with a significant decrease in plasma calcium and 25-hydroxyvitamin D3 levels. The calcium content of the medullary bone of femurs decreased markedly with the progress of vitamin D deficiency, whereas that of the cortical bone remained unchanged. Quantitative histological examination also showed that the area of the mineralized portion of medullary bone in quail that were fed the vitamin D-deficient diet markedly decreased compared with that in the control laying quail, whereas the total area of the mineralized and unmineralized portions of medullary bone in the bone marrow cavity increased moderately. Daily administration of vitamin D3 (0.75 microgram/day) to the vitamin D-deficient quail increased the mineralization of medullary bone as early as day 4. Daily administration of both estradiol (0.3 mg/day) and testosterone (0.9 mg/day) for 3 weeks to immature male chicks induced an apparent hypercalcemia and matrix formation of medullary bone, regardless of the vitamin D status of the chicks. Mineralization of medullary bone was observed only when vitamin D3 was administered together with the sex hormones. These results suggest that vitamin D3 is directly involved in the mineralization of medullary bone in birds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.