Abstract

Porous anodic alumina (PAA) films are widely used as templates for functional nanostructures, because of the high regularity and controllability of the pore morphology. However, growth mechanisms have not yet been developed that can explain quantitative relationships between processing conditions and oxide layer geometry. Here, we present a model for steady-state growth of these amorphous films, incorporating the novel feature that metal and oxygen ions are transported by coupled electrical migration and viscous flow. The oxide flow in the model arises near the film-solution interface at the pore bottoms, in response to the constraint of volume conservation. The hypothesis of viscous flow was successfully validated through detailed comparisons to observations of the motion of tungsten tracers in the film. Predictions of localized tensile stress near nanoscale ridges at the metal-film interface were supported by observations of voids at these sites. We suggest that the ordering of PAA may be explained by a mechanism in which metal-film interface motion is regulated by the combination of ionic migration in the oxide and stress-driven interface diffusion of metal atoms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call