Abstract
Elucidate the pathogenesis mechanism of post-stroke cognitive impairment (PSCI) can help to develop precision interventions. In this study, we established a mouse model of PSCI using the photochemical method, and behavioral tests including Y-maze and Novel object recognition task for accessing cognitive impairment were observed at week 2 post-stroke. Besides, synaptic plasticity, theta nerve oscillatory and the activity of glutamatergic neurons related to the ventral hippocampal-medial prefrontal glutamatergic neural pathway in the non-affected hemisphere (contralateral hemisphere to the lesion site) were observed. The result indicated the cognitive function declined at week 2 post-stroke. Synaptic plasticity, theta nerve oscillatory synchronization and the activity of glutamatergic neurons of the ventral hippocampal-medial prefrontal glutamatergic neural pathway in the non-affected hemisphere was down-regulated in the PSCI group compared to those of the SHAM group. Therefore, we concluded that the declined function of the ventral hippocampal-medial prefrontal glutamatergic pathway in the non-affected hemisphere is a biomarker in the occurrence of cognitive dysfunction after stroke.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.