Abstract

To determine the roles of varroa mites in activating or vectoring viral infections, we performed quantitative comparison of viral infections between bees with and without mites by dot blot analysis and enzyme-linked immunosorbent assay (ELISA). Under natural and artificial mite infestations, bee pupae contained significantly higher levels of Kashmir bee virus (KBV) and deformed wing virus (DWV) RNAs and KBV structural proteins than mite-free pupae. Moreover, in mite-infested bee pupae, DWV had amplified to extremely high titers with viral genomic RNA being clearly visible after separation of total bee RNA in agarose gels. Linear regression analysis has shown a positive correlation between the number of mites introduced and the levels of viral RNAs. The detection of viral RNAs in the nymph and adult mites underline the possible role of varroa in virus transmission. However, most groups of virus-free adult mites (9/12) were associated with bee pupae heavily infected by viruses, suggesting that the elevated viral titers in mite-infested pupae more likely resulted from activated viral replication. Based on these observations and our concurrent research demonstrating suppressed immune responses in bees infested with mites, we propose that parasitization by varroa suppresses the immunity of honey bees, leading to activation of persistent, latent viral infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.