Abstract

Magnetic properties of highly magnetostrictive amorphous glass-coated microwires are strongly correlated to the presence of a glass coating that introduces a spatially inhomogeneous stress field distribution. We investigate the influence of mechanical stresses on the inclination of magnetic domain walls in magnetic microwires. Magneto-optical Kerr effect imaging is used to compare the tilted orientation of the domain wall shape in as-cast and annealed microwires. Angular dependencies of magnetization loops measured by alternating gradient field magnetometry reveal that the change of domain wall tilting with annealing is related to the decrease of magnetic anisotropy with axial orientation. Finally, micromagnetic simulations are used to show that sufficiently high uniaxial magnetic anisotropy gives rise to the presence of observed charged domain walls with tilted orientation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.