Abstract

Integrated assessment models (IAMs) of the climate and economy aim to analyze the impact and efficacy of policies that aim to control climate change, such as carbon taxes and subsidies. A major characteristic of IAMs is that their geophysical sector determines the mean surface temperature increase over the preindustrial level, which in turn determines the damage function. Most of the existing IAMs assume that all of the future information is known. However, there are significant uncertainties in the climate and economic system, including parameter uncertainty, model uncertainty, climate tipping risks, and economic risks. For example, climate sensitivity, a well-known parameter that measures how much the equilibrium temperature will change if the atmospheric carbon concentration doubles, can range from below 1 to more than 10 in the literature. Climate damages are also uncertain. Some researchers assume that climate damages are proportional to instantaneous output, while others assume that climate damages have a more persistent impact on economic growth. The spatial distribution of climate damages is also uncertain. Climate tipping risks represent (nearly) irreversible climate events that may lead to significant changes in the climate system, such as the Greenland ice sheet collapse, while the conditions, probability of tipping, duration, and associated damage are also uncertain. Technological progress in carbon capture and storage, adaptation, renewable energy, and energy efficiency are uncertain as well. Future international cooperation and implementation of international agreements in controlling climate change may vary over time, possibly due to economic risks, natural disasters, or social conflict. In the face of these uncertainties, policy makers have to provide a decision that considers important factors such as risk aversion, inequality aversion, and sustainability of the economy and ecosystem. Solving this problem may require richer and more realistic models than standard IAMs and advanced computational methods. The recent literature has shown that these uncertainties can be incorporated into IAMs and may change optimal climate policies significantly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.