Abstract

The most common ovarian cancer is epithelial ovarian cancer (EOC) characterised by few early symptoms, widespread peritoneal dissemination and ascites at advanced stages that result in poor prognosis. Despite the recent progress in its management, including surgery and chemotherapy, EOC remains the most lethal gynaecological malignancy in women. Due to the limitations of current therapeutic approaches, many patients die of secondary disease (metastasis). MUC1 is associated with cellular transformation and tumorigenicity and is considered as an attractive therapeutic target for cancer therapy owning to its over-expression in most adenocarcinomas including EOC. Tumour-associated MUC1 plays an important role in EOC metastasis and progression. In neoplastic tissues, MUC1 is underglycosylated and reveals epitopes that are masked in the normal cells. This feature makes it possible to target tumour-associated MUC1 with antibodies, toxins or radionuclides or use a vaccine targeting tumour-associated MUC1 antigen. The shed tumour-associated MUC1 in blood can be used as a diagnostic biomarker for EOC detection and monitoring. Our recent results have shown that over-expression of MUC1 plays a very important role in EOC progression and MUC1 is an ideal target for targeted therapy to control metastatic and recurrent EOC. This review will summarize some important new findings supporting the role of MUC1 in EOC metastasis and progression and focus on the MUC1-based targeted therapy for control of metastatic and recurrent EOC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.