Abstract

Sediment resuspension is an important internal lake process in regulating nutrient cycling and ecosystem structure. Tubificid worms are widely and abundantly distributed in freshwater ecosystems and are able to alter the sediment characteristics. This study was conducted to verify the hypothesis that the alteration of sediments by tubificids may substantially influence the sediment resuspension process. Specifically, we investigated the influence of Limnodrilus hoffmeisteri (Tubificidae) on sediment resuspension using an apparatus designed to simulate the sediment resuspension process in Lake Taihu (China). We ex- amined L. hoffmeisteri according to its density (30 000 ind.m x2 ) in Lake Taihu and simulated the light (3.2 m.s x1 ), moderate (5.1 m.s x1 ) and strong (8.7 m.s x1 ) wind processes present in Lake Taihu. Tubificids loosened the sediment through their feeding and defecation activities and increased the sediment water con- tent. The appearance of tubificids increased the suspended solids (SS) in a 1.6 m water column under all three wind processes. During the sedimentation process, SS decreased rapidly in both the control and tubificid treatments. The total SS in the water column was significantly increased by tubificids and it changed sig- nificantly with time. In addition, the small size particles of the SS in the tubificid treatment were higher than that in the control. So, the appearance of tubificid worms (L. hoffmeisteri) enhanced sediment resuspension and raised the proportion of small size particles in SS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.