Abstract

Stonustoxin (SNTX) is a pore-forming cytolytic lethal factor, isolated from the venom of the stonefish Synanceja horrida, that has potent hemolytic activity. The role of tryptophan residues in the hemolytic activity of SNTX was investigated. Oxidation of tryptophan residues of SNTX with N-bromosuccinimide (NBS) resulted in loss of hemolytic activity. Binding of 8-anilino-1-naphthalenesulphonate (ANS) to SNTX resulted in occlusion of tryptophan residues that resulted in loss of hemolytic activity. Circular dichroism and fluorescence studies indicated that ANS binding resulted in a conformational change of SNTX, in particular, a relocation of surface tryptophan residues to the hydrophobic interior. NBS-modification resulted in oxidised surface tryptophan residues that did not relocate to the hydrophobic interior. These results suggest that native surface tryptophan residues play a pivotal role in the hemolytic activity of STNX, possibly by being an essential component of a hydrophobic surface necessary for pore-formation. This study is the first report on the essentiality of tryptophan residues in the activity of a lytic and lethal factor from a fish venom.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call