Abstract

An accumulating amount of evidence has suggested that there is a contributive role of sympathetic nervous hyperactivity in the pathogenesis of chronic kidney disease (CKD). α1-AR promotes an increase in calcium levels in podocytes and adjusts podocyte contraction. Changes in TRPC6 expression and function can directly affect the podocyte cytoskeleton, which is a key component in podocyte injury. This study proposed to clarify the correlation between α1-AR activation-induced signal cascade reaction and TRPC6 in human podocytes. Human podocytes were incubated with the calcium probe Fluo-3/AM. Next, the effects of the α1-AR agonists or antagonists and nonselective TRPC6 blockers on intracellular calcium were observed under laser confocal microscopy. FITC-phalloidin was employed to stain podocytes, and the change of F-actin under the α1-AR activation condition was observed. The α1-AR agonist PE (phenylephrine hydrochloride) induced an increase in intracellular Ca2+ ([Ca2+]i) in human podocytes. Moreover, the downregulation of TRPC6 by siRNA or TRPC blocker could attenuate the PE-induced [Ca2+]i elevation in a phospholipase C (PLC)-dependent pattern. When podocytes were stimulated to the PE, their F-actin fiber cytoskeletal structure was lost. PE subsequently increased the expression of RhoA, and the TRPC6-dependent Ca2+ influx was involved in this process. The abnormal activation of RhoA could result in disturbance of the podocyte skeleton structure, thus leading to podocyte injury. We concluded that TRPC6 is involved in α1-AR activation-induced calcium signal changes in podocytes. Meanwhile, the α1-AR agonists can destroy the cell's cytoskeletal structure, which is mediated by TRPC6 via the RhoA/ROCK pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call