Abstract

1. Skinned fibre preparations of right ventricular trabeculae, psoas and soleus muscles from hamster and rabbit were activated by Ca2+ and the length dependencies of their pCa (-log [Ca2+])-force relationships were compared. 2. Ca2+ sensitivity of the myocardium was higher at 2.2-2.4 microns than that at 1.7-1.9 microns. The length dependence was at least twofold greater in cardiac muscle than in fast skeletal fibres at identical temperatures and salt concentrations. Slow-twitch fibres gave a response similar to that in the myocardium. 3. The effect of the troponin C (TnC) phenotype on the length dependence of Ca2+ sensitivity was measured on both fast skeletal fibres and cardiac muscle with TnC exchange in situ. The length-induced increase in Ca2+ sensitivity was found to be greater in the presence of cardiac TnC than with fast skeletal TnC. Thus the results indicate that a certain domain of TnC is specialized in this length function, and that this domain is different in the two phenotypes. 4. The possibility that the enhanced length dependence of Ca2+ sensitivity after cardiac TnC reconstitution was attributable to reduced TnC binding was excluded when the length dependence of partially extracted fast fibres was reduced to one-half the normal value after a 50% deletion of the native TnC. 5. Two recombinant forms of cardiac TnC (kindly provided by Dr John Putkey, Houston, TX, USA) were used next, to investigate the roles of two specific domains in TnC in the control of length dependence of Ca2+ sensitivity and in the contraction-relaxation switching of cardiac muscle: 6. Using mutant CBM1 [corrected], in which site 1 was modified such as to bind the 4th Ca2+ ion, as in skeletal TnC, the length-induced Ca2+ sensitivity in cardiac muscle was suppressed. The effect was intermediate between cardiac and skeletal TnCs under the same conditions. The pSr (-log [Sr2+])-force relationship of cardiac muscle was also measured. In the presence of the mutant, skinned trabeculae manifest pSr-activation curves identical to those of fast fibres. This indicates that the metal ion binding properties of site 1 in TnC modulate the regulatory action of site 2. 7. Using mutant CBM2A, in which site 2 was inactivated, the activation of cardiac muscle by both Ca2+ and Sr2+ ions was completely blocked. This is the expected result, since both regulatory sites were now inactive, regulatory site 1 being normally inactive in cardiac muscle.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call